THE GAUSSIAN AND MEAN CURVATURE OF ONE SPECIAL TYPE OF SURFACES
Research Journal of Economics, Business and ICT
View Archive InfoField | Value | |
Title |
THE GAUSSIAN AND MEAN CURVATURE OF ONE SPECIAL TYPE OF SURFACES
|
|
Creator |
Kanka, Milos; College of Polytechnics Jihlava
|
|
Subject |
Economics, mathematics
Tangent Vectors, Unit Normal Vec-Or, First Fundamental Form, Second Fun-Amental Form, Gaussian Curvature, Mean Curvature, Weingarten Map C00 |
|
Description |
In (Kaňka el al., 2009) we studied the Gaussian curvature and Mean curvature of a special surfaces (1) as nonparametrically defined surfaces. There are different ways in which surfaces of type (1) can be parametrized. The aim of this paper is to give formulas for Gaussian and Mean curvature of one type of special surfaces of the form , where . (1) To reach the formulas of Gaussian and Mean Curvature, we use in this remark parametrical description of (1) in the form where
|
|
Publisher |
English Time Schools & Overseas Education
|
|
Contributor |
—
|
|
Date |
2012-03-10
|
|
Type |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
|
Format |
application/pdf
|
|
Identifier |
http://ojs.journals.cz/index.php/RJEBI/article/view/253
|
|
Source |
Research Journal of Economics, Business and ICT; Vol 4 (2012)
2047-7848 2045-3345 |
|
Language |
eng
|
|
Relation |
http://ojs.journals.cz/index.php/RJEBI/article/view/253/308
|
|
Rights |
Copyright (c) 2012 Milos Kanka
https://creativecommons.org/licenses/by/3.0/ |
|