PERANCANGAN SISTEM PREDIKSI CHURN PELANGGAN PT. TELEKOMUNIKASI SELULER DENGAN MEMANFAATKAN PROSES DATA MINING
Jurnal Informatika
View Archive InfoField | Value | |
Title |
PERANCANGAN SISTEM PREDIKSI CHURN PELANGGAN PT. TELEKOMUNIKASI SELULER DENGAN MEMANFAATKAN PROSES DATA MINING
|
|
Creator |
Govindaraju, Rajesri
Simatupang, Tota Samadhi, TMA. Ari |
|
Subject |
—
— |
|
Description |
The purpose of this research is to design a customer churn prediction system using data mining approach. This system is able to perform data integration, data cleaning, data transformation, sampling and data splitting, prediction model building, predicting customer churn, and show the results in certain agreed forms. Churn prediction variables were identified based on earlier research reports that include customer information, payment method, call pattern, complaint data, telecommunication services usage and change of telecommunication services usage behavior data. The preferred mining technique used is the classification with decision tree algorithm. The decision tree can present visual model which represents customer churn and non churn pattern behavior. This system was tested using Kartu Halo customer data in Bandung area and testing result showed 70,94% accuracy of the prediction model. Abstract in Bahasa Indonesia : Penelitian ini bertujuan merancang sistem prediksi churn pelanggan yang memanfaatkan proses data mining. Sistem yang dihasilkan dapat melakukan integrasi data, pembersihan data, transformasi data, sampling dan pemisahan data, konstruksi model prediksi, memprediksi churn pelanggan dan menampilkan hasil prediksi dalam format laporan tertentu yang diperlukan. Identifikasi variabel-variabel prediksi churn dilakukan berdasarkan model prediksi churn yang telah dikembangkan pada penelitian terdahulu yang antara lain mencakup informasi mengenai pelanggan, metode pembayaran, data percakapan, data penggunaan jenis-jenis layanan telekomunikasi dan data yang menggambarkan perubahan perilaku penggunaan layanan telekomunikasi tersebut. Teknik mining yang dipilih adalah teknik klasifikasi dengan algoritma decision tree. Decision tree menghasilkan model visual yang merepresentasikan pola perilaku pelanggan yang churn dan tidak churn. Uji coba sistem yang dilakukan menggunakan data pelanggan Kartu Halo daerah Bandung menghasilkan tingkat akurasi model prediksi sebesar 70,94%. Kata Kunci : customer relationship management (CRM), churn, data mining, decision tree, sistem prediksi churn. |
|
Publisher |
Institute of Research and Community Outreach - Petra Christian University
|
|
Contributor |
—
|
|
Date |
2009-01-20
|
|
Type |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion — |
|
Format |
application/pdf
|
|
Identifier |
http://jurnalinformatika.petra.ac.id/index.php/inf/article/view/16893
10.9744/informatika.9.1.33-42 |
|
Source |
Jurnal Informatika; Vol 9, No 1 (2008): MAY 2008; 33-42
2528-5823 1411-0105 |
|
Language |
eng
|
|
Relation |
http://jurnalinformatika.petra.ac.id/index.php/inf/article/view/16893/16876
|
|
Coverage |
—
— — |
|