Record Details

Aerobic rice: crop performance and water use efficiency

Journal of Agriculture and Environment for International Development

View Archive Info
 
 
Field Value
 
Title Aerobic rice: crop performance and water use efficiency
 
Creator Grassi, Chiara
Bouman, Bas Antonio Maria
CastaƱeda, Ambrocio Rellegue
Manzelli, Marco
Vecchio, Vincenzo
 
Description Rice (Oryza sativa) production largely depends on traditional flooded rice systems whose sustainability is threatened by a progressive decrease in water availability and a constant increase in rice demand due to strong demographic boom in world population.
A newly developed water-saving rice system is aerobic rice in which rice grows in nonflooded and unsaturated soil. From 2001, at the International Rice Research Institute in the Philippines, this system has been monitored to identify potentially promising varieties of rice able to grow as an irrigated upland crop and quantify yield potential and water use efficiency. This study reports on the results of cultivating the upland rice variety Apo under different water conditions in 2004-2005 at the IRRI farm in both the dry and wet seasons. The water treatments considered were: aerobic and flooded conditions, alternated flooded and aerobic conditions and aerobic after fallow. Yield and water productivity were
compared between aerobic and flooded treatment in both seasons, with the objective of analysing the differences between water treatments. In the experiment the effect of
different nitrogen (N) application is also considered. The results indicate that the aerobic rice yield was lower than rice production under flood treatment, confirming that observed
over past years. Nevertheless, when the aerobic condition is alternated with the anaerobic condition, or a fallow period, the production under aerobic treatment provides good yields
(respectively 4.2 and 4.4 ha-1). The fallow period was introduced to observe the response of rice grown under this management. Water productivity was higher in aerobic fields,
especially after fallow (0.88 g kg-1). The nitrogen application induced an increase in yield and water productivity, partially compensating for the lack of water in aerobic fields.
 
Publisher Italian Agency for Development Cooperation
 
Contributor
 
Date 2011-11-21
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion


 
Format application/pdf
 
Identifier http://www.iao.florence.it/ojs/index.php/JAEID/article/view/35
10.12895/jaeid.20094.35
 
Source Journal of Agriculture and Environment for International Development; Vol 103, No 4 (2009); 259-270
Journal of Agriculture and Environment for International Development (JAEID); Vol 103, No 4 (2009); 259-270
2240-2802
1590-7198
 
Language eng
 
Relation http://www.iao.florence.it/ojs/index.php/JAEID/article/view/35/39
 
Rights Copyright (c) 2015 Journal of Agriculture and Environment for International Development