Record Details

A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

Nova Economia

View Archive Info
 
 
Field Value
 
Title A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis
A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis
 
Creator Yim, Juliana
Mitchell, Heather
 
Subject
hybrid neural networks, corporate failures.
redes neurais híbridas, falência de empresas.
 
Description O presente artigo analisa o desempenho das redes neurais híbridas para prever falência de empresas no Brasil. Esta nova técnica foi comparada com modelos estatísticos tradicionais. Os resultados sugerem que as redes neurais híbridas são superiores as técnicas estatísticas um ano antes do evento. Isto sugere que para pesquisadores, políticos e outros interessados em “early warning systems”, redes neurais híbridas podem ser uma poderosa alternativa para prever falência de empresas.
This paper looks at the ability of a relatively new technique, hybrid ANN’s, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.
 
Publisher Nova Economia
Nova Economia
 
Contributor

 
Date 2009-06-02
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion

 
Format application/pdf
 
Identifier http://revistas.face.ufmg.br/index.php/novaeconomia/article/view/445
 
Source Nova Economia; v. 15, n. 1 (2005)
Nova Economia; v. 15, n. 1 (2005)
0103-6351
 
Language por
 
Relation http://revistas.face.ufmg.br/index.php/novaeconomia/article/view/445/442